Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433675

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, al-lowing tight control over potent host responses by both the host and the invading virus. Here we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.13.381319

ABSTRACT

Many inactivation methods have been shown to inactivate SARS-CoV-2 for safe and efficient diagnostic methods. COVID-19 is caused by airborne infection of SARS-CoV-2, and therefore, methods of inactivating the virus efficiently and safely are crucial for reducing the risk of airborne infection. In this regard, the effect of plasma discharge on the infectivity of the coronaviruses mouse hepatitis virus (MHV) and SARS-CoV-2 was tested. Plasma discharge efficiently reduced the infectivity of both coronaviruses. Treatment of SARS-CoV-2 in culture medium with a plasma discharge resulted in 95.17% viral inactivation after plasma irradiation after 1 hour (hr), 99.54% inactivation after 2 hrs and 99.93% inactivation after 3 hrs. Similar results were obtained for MHV. The results indicated that plasma discharge effectively and safely inactivated the airborne coronaviruses and may be useful in minimizing the risk of airborne infection of SARS-CoV-2.


Subject(s)
COVID-19 , Hepatitis, Viral, Human , Severe Acute Respiratory Syndrome , Infections
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.13.381343

ABSTRACT

The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domain, previously C6orf106) is a recently-characterised inhibitor of the transcription regulators p300 and CREB-binding protein (CBP). Here we have utilised RNA-seq to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) infection. We find that inhibition of ILRUN expression increases cellular expression of several members of the renin-angiotensin aldosterone system (RAAS), including the SARS-CoV-2 entry receptor angiotensin converting enzyme 2 (ACE2). Furthermore, inhibition of ILRUN results in increased SARS-CoV-2 replication. These data identify ILRUN as a novel inhibitor of SARS-CoV-2 replication and represents, to our knowledge, the first report of ILRUN as a regulator of the RAAS. SIGNIFICANCE STATEMENTThere is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions and the development of innovative and exciting therapeutic strategies and new knowledge and tools to better protect against the impacts of disease. The human protein-coding gene ILRUN is a recently-characterised inhibitor of the transcription regulators p300 and CREB-binding protein (CBP). Here we present the first evidence that ILRUN modulation has implications for SARS-CoV-2 infections. Virus infectivity assays confirmed that gene silencing of ILRUN had a proviral effect and increased SARS-CoV-2 replication, whilst over-expression of ILRUN inhibited SARS-CoV-2 production. Additionally, we observed that ILRUN also regulates the expression of key elements of the RAAS. These data have important implications for the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL